

In Situ Construction of CeO2-Incorporated Hybrid Covalent Organic Frameworks for Highly Efficient Lithium–Sulfur Batteries. Liping Si, Jianyi Wang, Zicong Lu, Zhida Chen, Lianjie Zhang, Haiyang Liu.Poly(ionic liquid) Nanovesicle-Templated Carbon Nanocapsules Functionalized with Uniform Iron Nitride Nanoparticles as Catalytic Sulfur Host for Li–S Batteries. Dongjiu Xie, Yaolin Xu, Yonglei Wang, Xuefeng Pan, Eneli Härk, Zdravko Kochovski, Alberto Eljarrat, Johannes Müller, Christoph T.Phase Engineering of Defective Copper Selenide toward Robust Lithium–Sulfur Batteries. Dawei Yang, Mengyao Li, Xuejiao Zheng, Xu Han, Chaoqi Zhang, Jordi Jacas Biendicho, Jordi Llorca, Jiaao Wang, Hongchang Hao, Junshan Li, Graeme Henkelman, Jordi Arbiol, Joan Ramon Morante, David Mitlin, Shulei Chou, Andreu Cabot.The Journal of Physical Chemistry C 2022, 126 In Operando FTIR Study on the Effect of Sulfur Chain Length in Sulfur Copolymer-Based Li–S Batteries. Ayda Rafie, Rhyz Pereira, Ahmad Arabi Shamsabadi, Vibha Kalra.Strengthened d–p Orbital Hybridization through Asymmetric Coordination Engineering of Single-Atom Catalysts for Durable Lithium–Sulfur Batteries. Genlin Liu, Wenmin Wang, Pan Zeng, Cheng Yuan, Lei Wang, Hongtai Li, Hao Zhang, Xuhui Sun, Kehua Dai, Jing Mao, Xin Li, Liang Zhang.
#RECHARGEABLE LITHIUM BATTERIES FREE#
Dual Functional High Donor Electrolytes for Lithium–Sulfur Batteries under Lithium Nitrate Free and Lean Electrolyte Conditions.

Sirisak Singsen, Ittipon Fongkaew, Pussana Hirunsit, Suwit Suthirakun.“Dual Mediator System” Enables Efficient and Persistent Regulation toward Sulfur Redox Conversion in Lithium–Sulfur Batteries. Long Jiao, Hao Jiang, Yechen Lei, Shuilin Wu, Qili Gao, Shuyu Bu, Xin Kong, Shuo Yang, Dengkun Shu, Chenyang Li, Heng Li, Bowen Cheng, Chun-Sing Lee, Wenjun Zhang.Visualization of Sulfur Chemical State of Cathode Active Materials for Lithium–Sulfur Batteries by Tender X-ray Spectroscopic Ptychography. Masaki Abe, Fusae Kaneko, Nozomu Ishiguro, Tatsuya Kubo, Fumiya Chujo, Yusuke Tamenori, Hiroyuki Kishimoto, Yukio Takahashi.Wide-Temperature-Range Li–S Batteries Enabled by Thiodimolybdate 2– as a Dual-Function Molecular Catalyst for Polysulfide Redox and Lithium Intercalation. Zhiyuan Ma, Wentao Liu, Xinyuan Jiang, Yi Liu, Guang Yang, Zhen Wu, Qiuping Zhou, Ming Chen, Ju Xie, Lubin Ni, Guowang Diao.ACS Materials Letters 2022, Article ASAP. A Lithium-Ion Conducting Polysulfide Polymer for Flexible Batteries. ACS Applied Energy Materials 2022, Article ASAP. Synergistic Adsorption-Electrocatalysis of Mo–MoB Heterostructures for Lithium–Sulfur Batteries. Zhendong Guo, Yifan Zhao, Yongqiang Miao, Dashuai Wang, Dong Zhang.Dual Passivation of Cathode and Anode through Electrode–Electrolyte Interface Engineering Enables Long-Lifespan Li Metal–SPAN Batteries. Yubin He, Peichao Zou, Seong-Min Bak, Chunyang Wang, Rui Zhang, Libing Yao, Yonghua Du, Enyuan Hu, Ruoqian Lin, Huolin L.This article is cited by 3160 publications.
